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Chapter 10. The Collapse of Dense Cores 
Notes: 
• Most of the material presented in this chapter is taken from Stahler and Palla (2004), 

Chap. 10. 

10.1 Ambipolar Diffusion 
In Chapter 9 we have successively studied cases where magnetic fields were either not 
considered or included in models of isothermal clouds equilibrium and stability. We now 
refine our model by considering the ambipolar diffusion phenomenon, which happens 
when the neutral component of the gas ceases to be perfectly coupled to the ionized 
component (i.e., electrons and ions). Since the ionized gas is coupled to the magnetic 
field lines, it follows that the neutrals are slipping by the field lines when ambipolar 
diffusion is occurring. That is, as far as the neutral are concerned the magnetic flux is 
diffusing away from the main component of the gas, hence the name.     
We start with the evaluation of the drift velocity of the ions (or electrons, since they are 
moving with a similar, but not exactly the same, mean velocity) 
 
 vd ≡ ui − u,  (10.1) 
 
where ui  and u  are the ion and neutral mean velocity, respectively. We know form the 
solution for Problem 5 of the First Assignment that the equations of motion for the ions 
and electrons can be combined (neglecting the inertial terms) to give 
 

 vdni µiν i + µeνe( ) = 1
c
j × B,  (10.2) 

 
where ni  is the volume density of ions (and electrons, from global charge neutrality 
considerations), and the pairs of µ  and ν  stand for the reduced mass and collision rates 
for the ions and electrons resulting form their collisions with the neutral particles. Using 
Ampère’s law we transform equation (10.2) to 
 

 

 

vd =
∇ × B( ) × B

4πni µiν i + µeνe( )


∇ × B( ) × B
4πniµiν i

,
 (10.3) 

  
since  µi  µe . The collision rate of a charge with neutral particles is a constant at low-
enough drift speed with (see equation (5.9) of the Lecture Notes) 
 
  ν i  10−9n  s−1,  when vd 

< 10 km s−1. (10.4) 
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If we consider once again the equation of motion for the ions, while neglecting the 
inertial term and assuming that the Lorentz force dictates their motion (i.e., the ions are 
tied to the magnetic field), then we simply have for Ohm’s law 
 

 

 

E  − ui
c
× B

= −
1
c
vd + u( ) × B,

 (10.5) 

 
which we insert into Faraday’s law of induction to get  
 

 

 

∂B
∂t

= −c ∇ × E( )

 ∇ × u × B( ) +∇ × vd × B( ).
 (10.6) 

 
The first term on the right hand side of equation (10.6) is the so-called convective term 
that is responsible for flux freezing, while the last term is a non-linear function of the 
magnetic field (from equation (10.3)) and is the diffusive term that leads to the diffusion 
of the magnetic field lines. Our story is therefore consistent, as the existence of a drift 
velocity (which implies ambipolar diffusion) cause the diffusion of the magnetic field. 
The ratio of the convective to the diffusive terms of equation (10.6) yields the so-called 
magnetic Reynolds number 
 

 
Rm =

∇ × u × B( )
∇ × vd × B( )

≈
4πniµiν iLV

B2
,
 (10.7) 

 
where L  and V ≈ u ≈ vd( )  are characteristic length and speed for our analysis. When 
conditions are such that  Rm 

> 1  then flux freezing prevails. On the other hand, ambipolar 
diffusion becomes important when  Rm 

< 1 . The relevant time scale for ambipolar 
diffusion, L vd , can be evaluated directly from equation (10.3) or with equation (10.7) 
(when setting V ≈ v d  and Rm ≈ 1 ) 
 

 

L
vd

≈
4πniµiν iL

2

B2

≈ 3×106 nH2

104  cm−3

⎛
⎝⎜

⎞
⎠⎟

3 2
B

30 µG
⎛
⎝⎜

⎞
⎠⎟

−2
L

0.1 pc
⎛
⎝⎜

⎞
⎠⎟

2

 yr,

 (10.8) 
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where we used ni = ne ≈ 1×10
−5nH2

−1 2  (see equation (8.46) of the Lecture Notes). We 
therefore see that this time scale is relevant for dense cores, as it compares well to their 
observed life times. 

10.1.1 Magnetic Flux Loss 
In the magnetic model of Chapter 9 we determined the variation in mass relative to that 
of the magnetic flux ratio dM dΦB  (see equation (9.54)) and assumed it to hold at all 
times because of flux freezing. We now see, however, that this assumption needs to be 
corrected for the presence of ambipolar diffusion. 
The temporal change in mass with a surface containing a fixed amount of magnetic flux 
is given by 
 

  (10.9) 

 
where  is the unit vector normal to the surface S , and the ΦB  subscript implies that the 
corresponding quantity is evaluated on the surface containing the magnetic flux.. The first 
thing to realize is that the drift velocity is directed perpendicular to B  (from equation 
(10.3)) and therefore to the surface (i.e., it is parallel to ). Equations (9.42) of the 
previous chapter also tells us that 
 

 
1
c
j × B = e−Φg aT

2

∇q,  (10.10) 

 

Figure 10.1 – Illustration of ambipolar diffusion in a magnetized core. The drift velocity 
is in a direction perpendicular to the surface containing the magnetic flux. 

∂M
∂t

⎛
⎝⎜

⎞
⎠⎟ ΦB

= ρvd ⋅ndaS∫ ,

n

n
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which when combined with Ampère’s law and equation (10.2) gives (with ) 
 

 
vd =

e−Φg aT
2

∇q
niµiν i

=
e−Φg aT

2

niµiν i

dq
dΦB

⎛
⎝⎜

⎞
⎠⎟
∇ΦB .

 (10.11) 

 
Referring to Figure 10.1 we can write for the normal vector 
 

 

n = ∇ΦB

∇ΦB

=
1

∇ΦB

∂ΦB

∂ϖ
eϖ +

∂ΦB

∂z
ez

⎛
⎝⎜

⎞
⎠⎟

=
1

∇ΦB

∂ΦB

∂ϖ
⎛
⎝⎜

⎞
⎠⎟
eϖ +

∂ϖ
∂z

⎛
⎝⎜

⎞
⎠⎟ ΦB

ez
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
eϖ + ∂ϖ

∂z
⎛
⎝⎜

⎞
⎠⎟ ΦB

ez
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1+ ∂ϖ
∂z

⎛
⎝⎜

⎞
⎠⎟ ΦB

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2 .

 (10.12) 

 
Insertion of equations (10.11) and (10.12) into equation (10.9) we get  
 

 ∂M
∂t

⎛
⎝⎜

⎞
⎠⎟ ΦB

=
4π
niµiν i

dq
dΦB

ϖ ∂ΦB

∂ϖ
1+ ∂ϖ

∂z
⎛
⎝⎜

⎞
⎠⎟ ΦB

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

e−Φg aT
2

0

Zcl ΦB( )
∫ dz,  (10.13) 

 
where we have used 
 

 ∇ΦB =
∂ΦB

∂ϖ
eϖ +

∂ϖ
∂z
ez

⎛
⎝⎜

⎞
⎠⎟
.  (10.14) 

 
This integral must then be continually evaluated to estimate the mass M ΦB( )  contained 
in a given magnetic flux tube, include it in equation (9.51), and use equations (9.48) and 
(9.49) to solve for cloud models that include ambipolar diffusion. Results for such a 
simulation are shown in Figure 10.2. The initial configuration was that of a cylinder of 
half-eight and radius of 0.75 pc, threaded by a poloidal magnetic field of 30 µG  in 
strength, and of 300 cm−3  density. The initial mass to flux ratio is subcritical. 
 
 

 µi  µe
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Figure 10.2 – Numerical simulation of a contracting, magnetized cloud, with inclusion of 
ambipolar diffusion, a times (a) 1.02 ×107  yr , (b) 1.51×107  yr , (c) 1.6 ×107  yr , and (d) 
1.61×107  yr . Light and heavy curves are for magnetic field lines and density contours, 
respectively. The thick curve corresponds to a density of 300 cm−3 , and arrows are the 
relative fluid velocity. 

The change in central density as a function of time is also shown in Figure 10.3. Note that 
once a high enough central density has been reached at t > 1.5 ×107  yr  (panel (c) in 
Figure 10.2), then ambipolar diffusion sets in (i.e., the mass to flux ratio becomes 
supercritical) and the central core of the cloud can also proceed across the magnetic field 
lines. Bending in the field lines is also evident. We note, however, that the basic shape of 
the resulting cloud has not been qualitatively altered, which also means that this more 
sophisticated model fails to match observations as well.   
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Figure 10.3 – Rise of the central density of the contracting cloud simulated in Figure 
10.2. 

10.1.2 Damping of Alfvén Waves 
We have already determined that Alfvén waves can provide significant support on 
sufficiently large scales in molecular cloud. We now want to make certain of this by 
verifying that only waves of length much larger than that of a core can propagate. To do 
so, we go back to our previous analysis of Chapter 9 (see the Appendix) and consider the 
dispersion relation calculated when keeping the neutral and plasma fluids separated. 
Therefore, neglecting gravity our set of equations to solve for is 
 

 

∂ δρ( )
∂t

+ ρ0∇ ⋅δu = 0

ρ0
∂ δu( )
∂t

+ aT
2∇ δρ( ) − µiniν i δui − δu( ) = 0

1
4π

∇ × δB( )⎡⎣ ⎤⎦ × B0 − µiniν i δui − δu( ) = 0
∂ δB( )
∂t

− ∇ × δui × B0( ) = 0,

 (10.15) 

 
where, as can be guessed, we have already set things up for our usual linear perturbation 
analysis. We thus proceed with a consideration of a single Fourier component and 
transform equations (10.15) to 
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−iωδρ + iρ0k ⋅δu = 0
−iωρ0δu + aT

2δρk − µiniν i δui − δu( ) = 0
i
4π

k ⋅B0( )δB − k ⋅δB( )B0⎡⎣ ⎤⎦ − µiniν i δui − δu( ) = 0
−iωδB − i k ⋅B0( )δui − k ⋅δui( )B0⎡⎣ ⎤⎦ = 0.

 (10.16) 

 
Since we know from equations (9.80) that for Alfvén waves the first of these equations 
gives δρ = k ⋅δui = 0  and the k ⋅δB = 0 , then the remaining equations reduce to 
 

 

−iωρ0δu − µiniν i δui − δu( ) = 0
i
4π

k ⋅B0( )δB − µiniν i δui − δu( ) = 0
ωδB + k ⋅B0( )δui = 0.

 (10.17) 

 
We next insert the first of these equations into the second to get 
 

 i
4π

k ⋅B0( )δB − µiniν iδui
iωρ0

iωρ0 − µiniν i

⎛
⎝⎜

⎞
⎠⎟
= 0,  (10.18) 

 
or 
 

 
δui = − 1− iωn

niν i

⎛
⎝⎜

⎞
⎠⎟
k ⋅B0( )δB
4πωρ0

= − 1− iω
χ iν i

⎛
⎝⎜

⎞
⎠⎟
k ⋅B0( )δB
4πωρ0

,
 (10.19) 

 
where we used  n  ρ0 µi  and χ i ≡ ni n  for the ionization fraction. We finally substitute 
the last of equations (10.17) for δB  to get 
 

 1− 1− iω
χ iν i

⎛
⎝⎜

⎞
⎠⎟
k ⋅B0( )2
4πω 2ρ0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δui = 0,  (10.20) 

 
or if we restrict ourselves to the simpler case where k and B0  are parallel 
 

 ω 2 +
ivA
2 k2

χ iν i
ω − vA

2 k2 = 0,  (10.21) 

 
with vA = B0 4πρ0  the Alfvén speed. This is a simple quadratic equation in ω  that is 
readily solved to yield 
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 ω =
1
2

−
ivA
2 k2

χ iν i
± vAk 4 − vAk

χ iν i

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.  (10.22) 

 
We therefore see that the first term on the right hand side of equation (10.22) will bring 
an exponential decay with time in the amplitude of the Alfvén wave resulting from the 
perturbation. The time necessary to effect this damping is (in term of the wave’s power) 
 

 

τ damp ≈
χ iν i

vA
2 k2

= 1×104 λ
0.06 pc

⎛
⎝⎜

⎞
⎠⎟

2
B

10 µG
⎛
⎝⎜

⎞
⎠⎟

−2 nH2

103  cm−3

⎛
⎝⎜

⎞
⎠⎟

3 2

 yr,
 (10.23) 

 
where equations (8.57) and (10.4) were used. The Alfvén wave with the shortest 
wavelength that can propagate is determined from equation (10.22) when 
 

 vAk
χ iν i

< 2,  (10.24) 

  
or 
 

 

λmin =
πvA

χ iν i

= 0.06 B
10 µG

⎛
⎝⎜

⎞
⎠⎟

nH2

103  cm−3

⎛
⎝⎜

⎞
⎠⎟

−1

 pc.
 (10.25) 

 
We see from equations (10.23) and (10.25) that a wave with λ ≈ 30λmin  will survive for 
the typical lifetime of a cloud (i.e., 107  yr ). 

10.2 Inside-out Collapse 
We now study the collapse of a dense core in the region that is located between the 
region where there is significant magnetic support (i.e., in the larger scale where 

 1017  cm

< L

< 1018  cm ) and the region close to the nascent protostar where magnetic 

field support has been removed through ambipolar diffusion ( 1011  cm

< L

< 1014  cm ). To 

carry this program we concentrate once again on a spherical isothermal sphere, but one 
that is slightly more massive than the Bonner-Ebert sphere studied in Chapter 9 (i.e., 
slightly on the right of the maximum of the curve shown in Figure 9.2). We first write the 
equations needed to solve the problem (numerically). The mass contained within a radius 
r  is 
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 Mr = 4π ′r 2ρd ′r
0

r

∫ .  (10.26) 

 
It follows that  
 

 

∂Mr

∂r
= 4πr2ρ

∂Mr

∂t
= 4π ′r 2 ∂ρ

∂t
d ′r

0

r

∫

= −4π ′r 2

0

r

∫
1
′r 2

∂ ′r 2ρu( )
∂ ′r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
d ′r

= −4π d ′r 2ρu( )
0

r

∫
= −4πr2ρu,

 (10.27) 

  
where the equation of continuity was used  
 

 
∂ρ
∂t

= −
1
r2

∂ r2ρu( )
∂r

.  (10.28) 

 
Furthermore, the equation of motion (including the non-linear term) is 
 

 
∂u
∂t

+ u ∂u
∂r

= −
aT
2

ρ
∂ρ
∂r

−
GMr

r2
. (10.29) 

 
With these equations (i.e., (10.27) to (10.29)) boundary conditions of the constant 
pressure or constant volume types are usually used, and the problem is solved 
numerically. The results from one such simulation is shown in Figure 10.4 for the infall 
velocity (normalized to the sound speed) as a function of the dimensionless radius. It is 
thus found that the sphere is collapsing in an inside-out manner, the so-called inside-out 
collapse. This main feature is highly insensitive of the boundary (initial) conditions. It is 
found that starting at the boundary of the cloud, the velocity grows until every mass shell 
is accelerating inward. The evolution of the central part of the cloud is very difficult to 
follow numerically, however, and one usually simplifies matter by numerically collecting 
the infalling matter into a sink-cell, while keeping track of the amount of mass falling 
within it. The protostar is assumed to accrete this mass. 
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Figure 10.4 – Velocity profiles in a collapsing, isothermal sphere as a function of the 
dimensionless radius ξ  (see equation (9.10)). The four times are measured in units of the 
free-fall time, tff  (see equation (3.21)), with t1 = −0.0509 , t2 = −0.0026 , t3 = −0.0001 , 
and t4 = 0 , the latter being the time of protostar formation. The free-fall time is that 
associated to the initial central density. 

10.2.1 The Mass Accretion Rate 
The concept of inside-out collapse is perhaps easier to grasp by monitoring the mass 
accretion rate,  M , into the sink-cell. This parameter determines the growth rate of the 
protostar and is mathematically defined as 
 

 

 

M ≡ lim
r→0

∂M
∂t

= lim
r→0

−4πr2ρu( ),
 (10.30) 

 
from the last of equations (10.27). The results from two simulations that started with 
different initial density contrasts are shown in Figure 10.5. It is seen that the accretion 
rate is initially relatively high before leveling off to a value of 
 

 
 
M = m0

aT
3

G
,  (10.31) 

  
where m0  is on the order of unity. We can interpret this equation as follows. When a 
protostar is formed then the gas nearby it is in free-fall, since gravity will be dominant 
over thermal pressure. We can then write for the free-fall velocity 
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Figure 10.5 – Time evolution of the mass accretion rate for two different initial density 
contrasts. 

 Vff ≡
2GM∗

r
⎛
⎝⎜

⎞
⎠⎟
1 2

,  (10.32) 

 
where  M∗ ≈ Mt  is the time-dependent mass of protostar. Of course, the gravitational pull 
of the protostar weakens with the radius and stops when  
 

 aT
2 ∂ρ
∂r

≈ ρ ∂
∂r

GM∗

r
⎛
⎝⎜

⎞
⎠⎟
,  (10.33) 

 
or 
 

 aT
2 ρ
r
≈ ρGM∗

r2
 (10.34) 

 
from hydrostatic equilibrium considerations, which implies that 
 
 aT ≈Vff .  (10.35) 
 
The radius, Rff , at which this occur is found to be such that 
 

 

 

M ≈
aT
2

G
Rff
t

≈
aT
2 Rff
G

,
 (10.36) 
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with  Rff ≈ Rff t . We then find that  Rff > 0  as long as  M > 0 , and the region of free-fall 
spreads with time as long there is some mass left to be accreted by the protostar. That is, 
a given shell of the sphere cannot collapse until the shell below it has already free-fallen. 
This is the essence of the inside-out collapse. This propagation happens at the speed of 
sounds, as can guessed from Figure 10.5. Setting  

Rff = aT  in equation (10.36) we 
approximately recover equation (10.31), which can be favorably transformed to 
 

 
 
M ≈ 2 ×10−6M

T
10 K

⎛
⎝⎜

⎞
⎠⎟

3 2

 yr−1.  (10.37) 

 
This relation implies that a  1 M  protostar accretes its mass over approximately 
5 ×105  yr , which is very small compared to its contraction time (  107  yr ). 

The inside-out collapse can also be investigated as follows. For the shell that is 
positioned just beyond the free-falling region, where matter free-falls at an approximately 
constant rate, we can write the equation of continuity as 
 

 
∂ρ
∂t

= −
1
r2

∂ r2ρu( )
∂r

= 0,
 (10.38) 

 
which implies from equation (10.30) that 
 

 
 

M = −4πr2ρu
= constant.

 (10.39) 

 
Setting u = −Vff  from equation (10.32) we find that 
 

 
 
ρ =

Mr−3 2

4π 2GM∗

,  (10.40) 

 
which implies that the density of that shell decreases with time. The picture that comes 
out of equation (10.40) is shown schematically in Figure 10.6.  
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Figure 10.6 – The inside-out collapse and the pressure profile at two different times. 
 
 
 
 
 
 
 
 
 
 


